
SUPERSINGULAR PRIMES FOR ELLIPTIC CURVES OVER Q
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1. Introduction

This is a note on Noam Elkies’ paper [7] on the existence of infinitely many super-
singular primes for elliptic curves over Q.

Throughout this note, for E/k and E ′/k elliptic curves, and k an algebraic closure
of k, define

Hom(E,E ′) := Homk(E,E
′) and End(E) := Hom(E,E).

And take k to be a perfect field (may not be necessary).

2. Supersingular Elliptic Curves

In this section we define supersingularity.

Theorem 2.1 (Deuring ’41 [5]). Let E/k be an elliptic curve with k a field with
characteristic p > 0. Then the following are equivalent:

(1) E[pr](k) = 0 for one (all) r ≥ 1.

(2) F̂r is (purely) inseparable for one (all) r ≥ 1, where F̂r is the dual of the prth-
power Frobenius map.

(3) The map [p] : E → E is purely inseparable and j(E) ∈ Fp2.
(4) End(E) is an order in a quaternion algebra.

Proof. See Theorem V.3.1 in [13]. �

Definition 2.2 If E has the properties given in Theorem 2.1, then it is called super-
singular. Otherwise we say E is ordinary.

We also have another useful characterisation for supersingular elliptic curves if they
are defined over a finite field.

Proposition 2.3. Let q = pr with p a prime, and E/Fq an elliptic curve. If F : E → E
is the q-th power Frobenius map, then E is supersingular if and only if

tr(F ) ≡ 0 (mod p).

Moreover, if p > 3, then E/Fp is supersingular if and only if

#E(Fp) = p+ 1.

Proof. We have [tr(F )] = F + F̂ , so

F̂ = [tr(F )]− F.
1
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Now from Corollary III.5.5 in [13], for m,n ∈ Z, [m] + nF is separable if and only if

p - m. Hence F̂ is separable if and only if p - tr(F ). So E is supersingular if and only
if p | tr(F ).

For the second part, if p > 3, then by the Hasse bound, we have

|#E(Fp)− (p+ 1)| ≤ 2
√
p < p.

Now,
tr(F ) = 1 + deg(F )− deg(1− F ),

with deg(F ) = p and deg(1− F ) = #E(Fp), so

|tr(F )| = |1 + p−#E(Fp)| < p.

And so p | tr(F ) if and only if tr(F ) = 0. �

Remark 2.4 For p > 3, the number of supersingular elliptic curve over Fp2 (up to

F p2-isomorphism) is

# {E/Fp2 | E is supersingular} =


b p
12
c+ 2 if p ≡ 11 (mod 12) {j = 0, 1728}

b p
12
c+ 1 if p ≡ 7 (mod 12) {j = 1728}

b p
12
c+ 1 if p ≡ 5 (mod 12) {j = 0}

b p
12
c if p ≡ 1 (mod 12)

For p = 3, there is only 1 supersingular elliptic curve. See Theorem V.4.1 in [13]. If
we restrict to E/Fp, then we have

# {E/Fp | E is supersingular} =


2−1h if p ≡ 1 (mod 4)

2h if p ≡ 3 (mod 8)

h if p ≡ 7 (mod 8)

where h = h(Q(
√
−p)) is the class number[1].

Remark 2.5 One of the most important application of supersingular elliptic curve is
cryptography. Given a large prime p and a small prime `, supersingular isogeny graph is
a graph where the nodes are the j-invariants of supersingular elliptic curves defined over
Fp2 , and the edges are degree `-isogenies. The key here is that since all supersingular
elliptic curves are isogenous, the graph is connected and admits other nice properties.
There are key exchange, signature schemes and public-key cryptography based on the
graph, and as of 2018, there are no known sub-exponential time algorithms for breaking
these schemes, even on quantum computers[6].

Definition 2.6 For K a number field, an elliptic curve E/K and a prime of good
reduction p of K, we say that p is a supersingular prime for E if the reduction of E
modulo p is supersingular. Otherwise p is called an ordinary prime for E.

Remark 2.7 Distinction between supersingular primes and ordinary primes are im-
portant in Iwasawa theory of elliptic curves. They are treated differently, and the
supersingular case is much harder[14].

Question 2.8 Given an elliptic curve E/K, what can you say about

S(E/K) := {p | p is a supersingular prime for E/K}?
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Answers to the above question:

(1) (Deuring ’41[5]) If E is a CM elliptic curve, then S(E/Q) has a density 1
2

amongst all primes. (His result generalises to arbitrary number field and not
just over Q. See Theorem 2.10).

(2) (Elkies ’87 [7]) S(E/Q) is infinite for any E/Q (or any number field K with
[K : Q] is odd.)

(3) (Elkies ’89 [8]) S(E/K) is infinite for any E/K if K is a real number field.
(4) (Jao ’05 [9]) S(E/K) is infinite for elliptic curves satisfying certain conditions

about cyclic p-isogeny.
(5) (Lang-Trotter ’76 [11]) Conjectured that if E/Q is without CM, then the as-

ymptotic is c
√
x

log x
. (Some progress has been made[4], but it is open as of 2018).

We have the following main lemma for proving supersingularity that are used in both
of Elkies’ paper, and also in Jao’s paper.

Lemma 2.9. Let E/k be an elliptic curve with chark = p > 0. Then E is supersingular
if there exist an order O of an imaginary quadratic field K such that O ⊂ End(E) and
p does not split in K.

Proof. We will prove the contrapositive, so suppose E is ordinary. Then either End(E)
is isomorphic to Z or an imaginary quadratic order O. If it is Z, then E cannot be
CM by any O, so we are done. If it is isomorphic to O, then tensoring the p-adic
representation

End(E)⊗Zp → EndZp(Tp(E))

with Q, we get
K ⊗Qp → Qp.

But the left hand side is a 2-dimensional Qp-algebra, so the map has a kernel. Hence
the tensor product is not a field and so p splits in K. �

For a CM elliptic curve over a number field, Deuring have proven a nice characteri-
sation of a supersingular prime.

Theorem 2.10 (Deuring, ’41 [5]). Let E be an elliptic curve over a number field F
with CM by O, where O is an order in an imaginary quadratic field K. Let P be a
prime of F of good reduction for E lying above p. Then P is an ordinary prime if and
only if p splits in K.

Proof. See Theorem 13.12 in [10].
�

3. Hilbert Class Polynomials

Given E/Q, by Lemma 2.9 the question now becomes, how to find a prime p such
that End(Ep) contains a suitable order. We will be using the Hilbert class polynomial
to find p such that End(Ep) contains O.

Definition 3.1 Given an imaginary quadratic order O, define

EllO(C) = {E/C | End(E) ∼= O} /isomorphisms
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Definition 3.2 Given D ∈ Z such that D > 0 and D ≡ 0, 3 (mod 4), define

OD := Z
[
D +

√
−D

2

]
an order of Q(

√
−D) with discriminant −D.

Lemma 3.3. Suppose ` ≡ 3 (mod 4) is a prime. Then for D = ` or 4`, h(OD) is odd.

Proof. See Proposition 3.11 and Theorem 7.7(ii) in [3]. �

Definition 3.4 Suppose D ∈ Z such that D > 0 and D ≡ 0, 3 (mod 4). Then the
Hilbert class polynomial of discriminant −D is

HD(X) := HOD
(X) :=

∏
E∈EllOD

(C)

(X − j(E))

Remark 3.5 Some authors use the term Hilbert class polynomial when OD is a max-
imal order, and use the term ring class polynomial for the general case, since the
splitting field of HO(X) is the ring class field of O. See Theorem 11.1 in [3].

Proposition 3.6. HD(X) ∈ Z[X] and is irreducible over K = Q(
√
−D).

Proof. See Corollary 21.13 and Theorem 21.14 in [15]. �

Lemma 3.7. Let KD be splitting field of HD(X) over K = Q(
√
−D). Then KD/Q is

Galois, and

Gal(KD/Q) ∼= Gal(KD/K) o (Z/2Z).

where the non-trivial element of Z/2Z acts on Gal(KD/K) by sending σ to its inverse
σ−1.

Proof. See Lemma 9.3 in [3]. �

Corollary 3.8. We have the following diagram of fields:

KD = Q(
√
−D, x1)

Q(x1) Q(x2) . . . Q(xn)

K = Q(
√
−D)

Q

where xi’s are roots of HD(X). Moreover, Q(xi)’s are distinct fields.

Proof. Follows from the structure of the Galois group Gal(KD/Q). �

Here onwards, let ` be a prime 3 mod 4.
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Theorem 3.9 (Deuring’s Lifting Theorem [5]). Let E0/Fp be an elliptic curve, and
let α0 ∈ End(E0) be a non-trivial endomorphism. Then there exist an elliptic curve
E/OK for K a number field, an endomorphism α ∈ End(E) and a prime p of K lying
above p with residue field k, such that

Ek ∼=F p
E0 and αF p

= α0.

Proof. We will prove the case assuming E0 is ordinary. Theorem 1.7.4.5 in [2] has a
proof for supersingular case, although it will lift it to local field as opposed to a number
field. Suppose p | deg(α0). Then

p - deg(α0 + [m]) = deg(α0) +mtr(α0) +m2

for some m ∈ Z, and since we can lift [m], we may assume p - deg(α0). Now suppose
kerα0 is not cyclic. Then

ker[m] ⊂ kerα0

for some m ∈ Z, so there exist β0 ∈ End(E0) such that α0 = β0 ◦ [m]. Once again, we
can always lift [m], so we may assume kerα0 is cyclic.

Let n = deg(α0) and

E ′0/Q(t) : y2 + (t− 1728)xy = x3 − 36(t− 1728)3x− (t− 1728)5

an elliptic curve with a j-invariant t and a discriminant t2(t − 1728)9. Let Z1, . . . , Zs
be the cyclic order n subgroups of E ′0. Then for i = 1, . . . , s, we have isogenies

λi : E ′0 → E ′i := E ′0/Zi

defined over Q(t, E ′0[n]). Let ji be the j-invariant of E ′i and let R be the integral closure
of Z[t, j1, . . . , js, E

′
0[n]] ⊂ Q(t, j1, . . . , js, E

′
0[n]). Now consider the map

r : Z[t]→ Fp, t 7→ j(E0).

Since R is integral over Z[t], the map extends to

r : R→ Fp
Let m = ker r. Now E0 is ordinary, so j(E0) 6= 0, 1728 and hence m 63 ∆(E0) =
t2(t − 1728)9. Therefore for each i = 0, . . . , s, we can pick a model Ei/R of E ′i such
that it has a good reduction at m. If k(m) := R/m, then

E0
∼=k (E0)k(m)

since their j-invariants are the same. Moreover p - n, so E ′0[n] ↪→ (E0)k ∼= E0 and hence
Zi ↪→ E0[n] for i = 1, . . . , s. Now by counting the cyclic order n subgroup of E0[n], we
see that one of the Zi must be equal to kerα0. So without loss of generality, suppose
(Z1)k = kerα0.

E0 E0

(E1)k(m)

α0

λ1,k(m) ∼=
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so (E0)k(m)
∼= (E1)k(m), and hence q := (t−j1) ⊂ m. Let S := R/q and K be the fraction

field of S, and let
E := (E0)S and E1 := (E1)S.

Now S is integral over Z, so K is a number field. And now j(E) = j(E1), so after some
finite degree base extension of K, we have E ∼= E1. Hence we can consider

λ1,S : E → E1 ∈ End(E) with kerλ1,S = (Z1)S.

So we have an elliptic curve E/S, with S = OK and K a number field, with a prime
p = m/q lying above p with residue field k satisfying:

j(Ek) = j((E0)k) = j(E0), so Ek ∼=Fp
E0

and
α := λ1,S ∈ End(E) with kerαF p

= kerα0.

Now since E0 is ordinary, Aut(End(E0)) = {±1}, so αk and α0 may differ by [−1], but
in which case we will take −α instead of α and we will have αk = α0. �

Lemma 3.10. Let E1, E2 ∈ EllO(C), and let ai ⊂ O be ideals such that Ei ∼= C/ai.
Then as O-modules,

Hom(E1, E2) ∼= J

for any ideal J in the same ideal class as a−11 a2. Moreover, for α ∈ J ,

deg(α) =
NO(α)

N(J)
.

Proof.

Hom(C/a1,C/a2) = {α ∈ C | αa1 ⊂ a2}
= {α ∈ K | αa1 ⊂ a2}
= a−11 a2.

And for α ∈ a−11 a2,

deg(α) = (a2 : αa1)

= (O : α)(α : αa1)(O : a2)
−1

= NO(α) N(a1) N(a2)
−1

=
NO(α)

N(a−11 a2)

�

Proposition 3.11. Let K be a number field, p a prime of K, E1/K and E2/K elliptic
curves with good reduction at p, and E1 and E2 their reduction modulo p. Let L/K
be a finite extension such that HomL(E1, E2) = Hom(E1, E2), and let P a prime of L
lying above p. Then the natural reduction map

HomL(E1, E2)→ Hom(E1, E2)

is degree preserving injection.
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Proof. See Proposition II.4.4 in [12]. �

Lemma 3.12. H`(123) = H4`(123) = 0 (mod `).

Proof. Consider an elliptic curve E`/F` given by y2 = x3 − x. There exists an auto-
morphism

I : E` → E`, (x, y) 7→ (−x,
√
−1y).

And I2 = −1, so Z[I] is an imaginary quadratic order with Z[I] ⊂ End(E`). Now
` ≡ 3 (mod 4), so ` does not split in Q(I) and so E` is supersingular by Lemma 2.9.
If ` > 3, then by Proposition 2.3, the Frobenius F satisfies tr(F ) = 0. If ` = 3, then
#E`(F3) = 4, so tr(F ) = 0 in this case as well. Hence

0 = F 2 − tr(F )F + deg(F ) = F 2 + `.

Moreover, since all 2-torsions are F`-rational, ker([2]) ⊂ E`(F`) = ker(1− F ), and so

1−F
2
∈ End(E`).

Hence

End(E`) ⊃ Z⊕ ZI ⊕ Z1+F
2
⊕ Z I+IF

2

with I2 = −1, F 2 = −` and IF = −FI. The order on the right-hand side has
discriminant `, so it is maximal (see 15.1 in [16]), hence

End(E`) = Z⊕ ZI ⊕ Z1+F
2
⊕ Z I+IF

2
.

Now by Theorem 3.9, we can lift E` and 1+F
2

to E/K and α ∈ End(E) so that

E and α reduces to E` and 1+F
2

respectively modulo some prime l of K above `.

Now Z[α] ∼= Z[1+
√
−`

2
] = O` is the ring of integers of Q(

√
−`) ∼= End(E)⊗Q, so

End(E) = Z[α]. And j(E`) = 1728, so we have E ∈ EllO`
(C) with j(E) ≡ 1728

(mod l). Hence

H`(123) ≡ 0 (mod `).

Similarly, we can lift E` and IF to obtain E/K with β ∈ End(E) with End(E) ⊃
Z[β] ∼= O4`. And 1+β

2
/∈ End(E), because 1+IF

2
/∈ End(E`). Hence End(E) = Z[β] and

E ∈ EllO4`
(C), so

H4`(123) ≡ 0 (mod `).

�

Lemma 3.13. Let D = ` or 4`, KD be the splitting field of HD(X) over K := Q(
√
−`)

and let x0 be a root of HD(X). Then there exists a unique prime l of KD lying above
`, such that x0 ≡ 123 (mod l).

Proof. Existence of l is proven by Lemma 3.12. Suppose there exist another prime l′

lying above ` such that x0 ≡ 123 (mod l′). Then there exist σ ∈ Gal(KD/Q) such that
σ(l′) = l. Then

x1 := σ(x0)

is another root of HD(X) and since x0 ≡ 123 (mod l′), we have

x1 = σ(x0) ≡ 123 (mod σ(l′) = l).
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So we have x0 ≡ 123 ≡ x1 (mod l). Let E0 and E1 be distinct elliptic curves with
j-invariant x0 and x1, both of which reduces to E` mod l (E` is from the previous
lemma). Hence we obtain a degree-preserving embedding

φ : Hom(E0, E1) ↪→ End(E`) =: A.

Now by Lemma 3.10, we have Hom(E0, E1) ∼= J ⊂ OD for some non-principal ideal J ,
and for x ∈ Hom(E0, E1), deg(x) = NOD

(x)/N(J). Let α, β ∈ J be a Z-basis of J , and
define

q(x, y) =
NOD

(αx+ βy)

N(J)
,

a quadratic form on J . Now for x ∈ End(E`), deg(x) = NA(x), so we have a map

φ : J → imφ ⊂ A

that respects the quadratic form q(x, y). Now to show that E0 and E1 cannot be
distinct, we will treat D = ` and D = 4` cases separately and show that they both
lead to contradiction.

Case 1. D = `: Now by Theorem 2.8 in [3], we can change the basis so that it is
reduced, i.e.

q(x, y) = ax2 + bxy + cy2

with |b| ≤ a ≤ c. Moreover, the discriminant D = b2 − 4ac = −`, and so a ≤
√
−D
3

=√
`
3
. And now,

c =
b2 + `

4a
≤ 1

4

(
a+

`

a

)
≤ 1 + `

4
.

But if c = 1+`
4

, then q(x, y) = x2 − x+ 1+`
4

which corresponds to the trivial ideal class

in Cl(O`) and J is not principal so that is not possible. Hence we have c < 1+`
4

, and
J admits a Z-basis α1, α2 such that

deg(αj) <
1 + `

4
for j = 1, 2.

Now if αj = aj + bjI + cj
1+F
2

+ dj
I+IF

2
∈ R with aj, bj, cj, dj ∈ Z, then

q(x, y) = NA(α1x+ α2y)

= NA

(
(a1x+ a2y) + (b1x+ b2y)I + (c1x+ c2y)1+F

2
+ (d1x+ d2y) I+IF

2

)
=
((
a1 + c1

2

)2
+
(
b1 + d1

2

)2
+ `

4

(
c21 + d21

))
x2

+
(
2a1a2 + 2b1b2 + 2c1c2

1+`
4

+ 2d1d2
1+`
4

+ a1c2 + a2c1 + b1d2 + b2d1
)
xy(1)

+
((
a2 + c2

2

)2
+
(
b2 + d2

2

)2
+ `

4

(
c22 + d22

))
y2

so in particular,

deg(αj) =
(
aj +

cj
2

)2
+
(
bj +

dj
2

)2
+ `

4

(
c2j + d2j

)
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And now deg(αj) < 1+`
4

implies cj = 0 = dj, and hence imφ ⊂ Z[I]. But the
fundamental volume of J is

vol(J) =

√
−D

4
=

√
`

2
,

and every sub-lattice of Z[I] has integral fundamental volume so it is a contradiction.
Hence E0 and E1 cannot be distinct so x0 is the unique root with x0 ≡ 123 (mod l).

Case 2. D = 4`. Now by Theorem 2.8 in [3], we can change the basis so that it is
reduced, i.e.

q(x, y) = ax2 + bxy + cy2

with |b| ≤ a ≤ c. Moreover, the discriminant D = b2− 4ac = −4`, and so a ≤
√
−D
3

=√
4`
3

. And now,

c =
b2 + 4`

4a
≤ 1

4

(
a+ 4

`

a

)
≤ 1 + 4`

4
.

But c ∈ Z, so c ≤ `, and if c = `, then q(x, y) = x2 + ` which corresponds to the trivial
ideal class in Cl(O4`) and J is not principal so that is a contradiction. Hence we have
c < `. Now if c < 1+`

4
, then the proof for case 1 will show that imφ ⊂ Z[I], and will

lead to a contradiction since vol(J) =
√
`. So we are going to assume 1+`

4
≤ c < `.

Moreover since −4` = D = b2 − 4ac, we have 2|b, so the restrictions are:

2 ≤ |b| ≤ a ≤ c and 1+`
4
≤ c < `.

If a = 2, then |b| = 2 and c = 1+`
2

. But then q(x, y) is primitive (see Theorem 7.7 in
[3]) so this is not possible.

If a = 3, then |b| = 2 and c = 1+`
3

. Now from a ≤ c, we have ` ≥ 8, and also

3 | 1 + `, so ` ≥ 11. Now if αj = aj + bjI + cj
1+F
2

+ dj
I+IF

2
is the Z-basis of imφ with

deg(α1) = a = 3 and deg(α2) = c = 1+`
3

, then by considering eq. (1), we must have

(2)
(
a1 + c1

2

)2
+
(
b1 + d1

2

)2
+ `

4

(
c21 + d21

)
= 3.

If ` = 11, then without loss of generality, we can assume a1 = b1 = d1 = 0 and c1 = 1.
Moreover c = 3 so a2 = b2 = 0 and either c2 = ±1 or d2 = ±1. But by looking at
b = ±2, we have

6c2 + a2 = b = ±2,

and this is not possible. If ` > 11, then 1+`
4

> 3, and so from eq. (2), we have
c1 = 0 = d1. But a21 + b21 = 3 has no solution, so this also not possible. Hence a = 3 is
not possible.

If a = 4, then either |b| = 2 or |b| = 4. If |b| = 4, then c = 16+4`
16

which is not possible

since c ∈ Z. So |b| = 2 and c = 1+`
4

. From a ≤ c, we have 4 ≤ c = 1+`
4

so 15 ≤ `, but `

is a prime so 17 ≤ `. Hence `
4
> 4 and from(

a1 + c1
2

)2
+
(
b1 + d1

2

)2
+ `

4

(
c21 + d21

)
= a = 4,
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we have c1 = 0 = d1, and either a21 = 4 or b21 = 4. So without loss of generality, assume
a1 = 2. Then by looking at b = ±2, we have

4a2 + c2 = b = ±2.

and so 2|c2. But (
a2 + c2

2

)2
+
(
b2 + d2

2

)2
+ `

4

(
c22 + d22

)
= c = 1+`

4

so c2 = 0 and we get 4a2 = ±2 a contradiction. So a = 4 is also not possible.
If a ≥ 5 then

1+`
4
≤ c = b2+4`

4a
≤ 1

4

(
a+ 4 `

a

)
≤ 1

4

(
5 + 4

5
`
)
,

which implies ` ≤ 19. But 5 ≤ a ≤
√

4`
3

, so in fact ` = 19 and a = 5. And |b| = 2 or

4, but since c = b2+4`
4a

, |b| = 2. Hence c = 16. You can check that there is no integer
solutions to (

a1 + c1
2

)2
+
(
b1 + d1

2

)2
+ 19

4

(
c21 + d21

)
= 5

2a1a2 + 2b1b2 + 10c1c2 + 10d1d2 + a1c2 + a2c1 + b1d2 + b2d1 = ±2(
a2 + c2

2

)2
+
(
b2 + d2

2

)2
+ 19

4

(
c22 + d22

)
= 16

which proves that D = 4` case is also not possible, and hence x0 is the unique root
with x0 ≡ 123 (mod l).

�

Proposition 3.14. For D = ` or 4`, there exists R(X) ∈ F`[X] such that

HD(X) ≡ (X − 123)R(X)2(mod `)

Proof. Let x0, KD and l be as in Lemma 3.13. From Corollary 3.8, we know there
exists an involution in σ ∈ Gal(KD/Q) such that σ(x0) = x0. And from Lemma 3.13,
we know that σ also fixes l, so we can reduce σ mod l. Now the Galois group of the
residue fields Gal(k(l),F`) is also a subquotient of Gal(KD/K) since the inertia degree
of
√
−`/` is 1. And Gal(KD/K) ∼= Cl(OD) is odd by Lemma 3.3, so the involution

must be trivial on the residue field. Moreover, by Corollary 3.8, σ does not fix any
other roots, so σ(x) ≡ x (mod l) for any x 6= x0 a root of HD(X). Hence

HD(X) ≡ (X − 123)R(X)2 (mod `)

for some R(X) ∈ F`[X]. �

Lemma 3.15. The only real roots of H`(X) and H4`(X) are j(1
2
(1 +

√
−`)) and

j(
√
−`) respectively.

Proof. From the bijection between the ideal class group of OD and EllOD
(C), we see

that the complex conjugation acting on the roots of HD(X) corresponds to complex
conjugation on the ideal class. Now,

II = N(I)OD =⇒ I = I−1 ∈ Cl(OD),

so the ideal classes fixed by the complex conjugations are the 2-torsion of the class
group. But for D = ` or 4`, Cl(OD) is odd by Lemma 3.3, so there is only one class
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fixed by the conjugation in each class group. Hence the only real roots are the ones
corresponding to the trivial classes in Cl(OD).

Finally the j-invariants corresponding to O` and O4` are j(1
2
(1 +
√
−`)) and j(

√
−`)

respectively. �

Lemma 3.16. For all J ∈ R, there exist LJ > 0 such that for all ` > LJ , H`(J) > 0
and H4`(J) < 0.

Proof. Since j` = j(1
2
(1 +

√
−`)) and j4` = j(

√
−`) are the only real roots, it suffices

to show that j` → −∞ and j4` →∞ as `→∞. And from

j(τ) = 1
q

+ 744 + 196884q + . . . , where q = exp(2πiτ)

we see that as ` → ∞, j` → −∞ and j4` → ∞. So for sufficiently large `, j` < J and
j4` > J . �

4. Supersingular primes

Theorem 4.1 (Elkies ’87 [7]). Let S be a finite set of primes. Then E/Q has a
supersingular prime outside S.

Proof. Without loss of generality, we can assume that S contains all the primes of bad
reduction for E. Now let ` be a prime satisfying the following conditions:

(1)
(
p
`

)
= 1 for all p ∈ S,

(2)
(−1
`

)
= −1, and

(3) ` > Lj(E), where Lj(E) is from Lemma 3.16.

The first two conditions are congruence conditions, so by Dirichlet’s theorem on primes
in arithmetic progression, there exist infinitely many primes satisfying those conditions
above.

Now suppose there exist a prime p satisfying the conditions below:

(1) p |M where H`(j(E))H4`(j(E)) =: −M
N

, where M,N > 0, and

(2)
(
p
`

)
= −1 or p = `.

Note that H`(j(E))H4`(j(E)) < 0 by Lemma 3.16 and by our choice of `. Then there
exist E ′/K` with CM by OD and a prime p of K` above p such that

j(E) ≡ j(E ′) mod p.

Hence after reduction modulo p,

End(Ep) ∼= End(E ′p) ⊃ OD.

And since
(
p
`

)
= −1 or p = `, p does not split in K = Q(

√
−`), and so p is a

supersingular prime of E. Moreover, condition (1) on ` and condition (2) on p implies
p /∈ S.

Now it remains to show that such p exists. So suppose no such p exists. Then every
prime dividing M is a quadratic residue mod `, so

(
M
`

)
= 1. And H`(X)H4`(X) has

an even degree, so N is a square and hence
(
N
`

)
= 1. Now, from Proposition 3.14,

−M
N

= (j(E)− 123)2R(j(E))2Q(j(E))2 (mod `),
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but that is a contradiction since
(−1
`

)
= −1 by the construction of `. Hence p satisfying

above conditions exists. �

Remark 4.2 The proof of Theorem 4.1 holds for elliptic curves E defined over a
number field L if [L : Q] is odd. The main differences are as follows:

• If S is a finite set of primes of L, then take SQ = {p ∩ Z | p ∈ S}.
• Look at the prime factors of NL/Q(H`(j(E))H4`(j(E))), and since [L : Q] is

odd, the norm will be negative for sufficiently large `.

We then find p and then pick a prime p of L above p such that End(Ep) ⊃ OD, and
that will show p is a supersingular prime.
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