Integer Dynamics

Abstract

By repeatedly summing the squares of the digits in base b, we obtain a sequence of integers. In this paper, we are concerned with the cycles that arise in this iterative process. It is known that any such sequence ends in a cycle, and for a fixed base b, there are only finitely many cycles. We show that for any 1, the set of bases b that admit a cycle of length contains an arithmetic progression, and therefore has positive lower density.

Publication
Accepted by International Journal of Number Theory